Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Brief Funct Genomics ; 22(2): 227-240, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2280470

ABSTRACT

SARS-CoV-2 encodes eight accessory proteins, one of which, ORF8, has a poorly conserved sequence with SARS-CoV and its role in viral pathogenicity has recently been identified. ORF8 in SARS-CoV-2 has a unique functional feature that allows it to form a dimer structure linked by a disulfide bridge between Cys20 and Cys20 (S-S). This study provides structural characterization of natural mutant variants as well as the identification of potential drug candidates capable of binding directly to the interchain disulfide bridge. The lead compounds reported in this work have a tendency to settle in the dimeric interfaces by direct interaction with the disulfide bridge. These molecules may disturb the dimer formation and may have an inhibition impact on its potential functional role in host immune evasion and virulence pathogenicity. This work provides detailed insights on the sequence and structural variability through computational mutational studies, as well as potent drug candidates with the ability to interrupt the intermolecular disulfide bridge formed between Cys20 and Cys20. Furthermore, the interactions of ORF8 peptides complexed with MHC-1 is studied, and the binding mode reveals that certain ORF8 peptides bind to MHC-1 in a manner similar to other viral peptides. Overall, this study is a narrative of various computational approaches used to provide detailed structural insights into SARS-CoV-2 ORF8 interchain disulfide bond disruptors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Dimerization
3.
Curr Mol Pharmacol ; 15(2): 418-433, 2022.
Article in English | MEDLINE | ID: covidwho-1399072

ABSTRACT

The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few drugs are used in emergency like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potential therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catalytic Domain , Communicable Disease Control , Humans
4.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1262-1270, 2021.
Article in English | MEDLINE | ID: covidwho-1349900

ABSTRACT

SARS-CoV-2 encodes the Mac1 domain within the large nonstructural protein 3 (Nsp3), which has an ADP-ribosylhydrolase activity conserved in other coronaviruses. The enzymatic activity of Mac1 makes it an essential virulence factor for the pathogenicity of coronavirus (CoV). They have a regulatory role in counteracting host-mediated antiviral ADP-ribosylation, which is unique part of host response towards viral infections. Mac1 shows highly conserved residues in the binding pocket for the mono and poly ADP-ribose. Therefore, SARS-CoV-2 Mac1 enzyme is considered as an ideal drug target and inhibitors developed against them can possess a broad antiviral activity against CoV. ADP-ribose-1 phosphate bound closed form of Mac1 domain is considered for screening with large database of ZINC. XP docking and QPLD provides strong potential lead compounds, that perfectly fits inside the binding pocket. Quantum mechanical studies expose that, substrate and leads have similar electron donor ability in the head regions, that allocates tight binding inside the substrate-binding pocket. Molecular dynamics study confirms the substrate and new lead molecules presence of electron donor and acceptor makes the interactions tight inside the binding pocket. Overall binding phenomenon shows both substrate and lead molecules are well-adopt to bind with similar binding mode inside the closed form of Mac1.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , SARS-CoV-2/drug effects , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Antiviral Agents/pharmacology , Computational Biology , Coronavirus Papain-Like Proteases/genetics , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/statistics & numerical data , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains , Quantum Theory , SARS-CoV-2/genetics , SARS-CoV-2/physiology , User-Computer Interface
6.
Front Chem ; 8: 595273, 2020.
Article in English | MEDLINE | ID: covidwho-1069717

ABSTRACT

The recent pandemic outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), raised global health and economic concerns. Phylogenetically, SARS-CoV-2 is closely related to SARS-CoV, and both encode the enzyme main protease (Mpro/3CLpro), which can be a potential target inhibiting viral replication. Through this work, we have compiled the structural aspects of Mpro conformational changes, with molecular modeling and 1-µs MD simulations. Long-scale MD simulation resolves the mechanism role of crucial amino acids involved in protein stability, followed by ensemble docking which provides potential compounds from the Traditional Chinese Medicine (TCM) database. These lead compounds directly interact with active site residues (His41, Gly143, and Cys145) of Mpro, which plays a crucial role in the enzymatic activity. Through the binding mode analysis in the S1, S1', S2, and S4 binding subsites, screened compounds may be functional for the distortion of the oxyanion hole in the reaction mechanism, and it may lead to the inhibition of Mpro in SARS-CoV-2. The hit compounds are naturally occurring compounds; they provide a sustainable and readily available option for medical treatment in humans infected by SARS-CoV-2. Henceforth, extensive analysis through molecular modeling approaches explained that the proposed molecules might be promising SARS-CoV-2 inhibitors for the inhibition of COVID-19, subjected to experimental validation.

7.
PLoS Pathog ; 16(12): e1009100, 2020 12.
Article in English | MEDLINE | ID: covidwho-954543

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.


Subject(s)
COVID-19 , Molecular Docking Simulation , Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Humans , Magnetic Resonance Spectroscopy , Nucleocapsid Proteins/genetics , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
8.
J Biomol Struct Dyn ; 39(13): 4582-4593, 2021 08.
Article in English | MEDLINE | ID: covidwho-610635

ABSTRACT

The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) calls the whole world into a medical emergency. For tackling Coronavirus Disease 2019 (COVID-19), researchers from around the world are swiftly working on designing and identifying inhibitors against all possible viral key protein targets. One of the attractive drug targets is guanine-N7 methyltransferase which plays the main role in capping the 5'-ends of viral genomic RNA and sub genomic RNAs, to escape the host's innate immunity. We performed homology modeling and molecular dynamic (MD) simulation, in order to understand the molecular architecture of Guanosine-P3-Adenosine-5',5'-Triphosphate (G3A) binding with C-terminal N7-MTase domain of nsp14 from SARS-CoV-2. The residue Asn388 is highly conserved in present both in N7-MTase from SARS-CoV and SARS-CoV-2 and displays a unique function in G3A binding. For an in-depth understanding of these substrate specificities, we tried to screen and identify inhibitors from the Traditional Chinese Medicine (TCM) database. The combination of several computational approaches, including screening, MM/GBSA, MD simulations, and PCA calculations, provides the screened compounds that readily interact with the G3A binding site of homology modeled N7-MTase domain. Compounds from this screening will have strong potency towards inhibiting the substrate-binding and efficiently hinder the viral 5'-end RNA capping mechanism. We strongly believe the final compounds can become COVID-19 therapeutics, with huge international support.[Formula: see text]The focus of this study is to screen for antiviral inhibitors blocking guanine-N7 methyltransferase (N7-MTase), one of the key drug targets involved in the first methylation step of the SARS-CoV-2 RNA capping mechanism. Compounds binding the substrate-binding site can interfere with enzyme catalysis and impede 5'-end cap formation, which is crucial to mimic host RNA and evade host cellular immune responses. Therefore, our study proposes the top hit compounds from the Traditional Chinese Medicine (TCM) database using a combination of several computational approaches.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Methyltransferases , Antiviral Agents/pharmacology , Exoribonucleases/metabolism , Guanine , Humans , Methyltransferases/metabolism , Molecular Dynamics Simulation , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins
SELECTION OF CITATIONS
SEARCH DETAIL